论著摘要 |【MR】复发性胶质母细胞瘤的大规模放射分析鉴定了分层抗血管生成治疗反应的成像预测因子(双语版)

2017-10-11 13:54:14 admin 0

Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response.

发表日期: 2016.10.10   来源:Clinical Cancer Research, 2017, 22(23):5765-5771.

作者

Philipp Kickingereder1,*, Michael Götz2, John Muschelli3, Antje Wick4, Ulf Neuberger1, Russell T. Shinohara5, Martin Sill6, Martha Nowosielski7, Heinz-Peter Schlemmer8, Alexander Radbruch1,8, Wolfgang Wick4,9, Martin Bendszus1, Klaus H. Maier-Hein2, and David Bonekamp1,8

作者介绍:

1. Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany

2. Medical Image Computing, Division Medical and Biological Informatics, German Cancer Research Center (DKFZ), Heidelberg, Germany

3. Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

4. Neurology Clinic, University of Heidelberg Medical Center, Heidelberg, Germany.

5Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

6. Division of Biostatistics, DKFZ, Heidelberg, Germany.

7. Department of Neurology, The Medical University of Innsbruck, Innsbruck, Austria.

8. Department of Radiology, DKFZ, Heidelberg, Germany.

9. Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany

*Corresponding Author:

Philipp Kickingereder, Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany. Phone: 49 6221-56-39069; Fax: 49 6221-56-4673; E-mail: philipp.kickingereder@med.uni-heidelberg.de

摘要

Abstract

目的

贝伐单抗的抗血管生成治疗是复发性胶质母细胞瘤患者使用的唯一最广泛的治疗剂,贝伐单抗是一种针对血管内皮生长因子的单抗。 一个主要的挑战是目前没有可以预测治疗结果的有效生物标志物。 在这里,我们分析了辐射计的潜力,这是一个新兴的研究领域,旨在利用医学影像的全部潜力。

Purpose

Antiangiogenic treatment with bevacizumab, a mAb to the VEGF, is the single most widely used therapeutic agent for patients with recurrent glioblastoma. A major challenge is that there are currently no validated biomarkers that can predict treatment outcome. Here we analyze the potential of radiomics, an emerging field of research that aims to utilize the full potential of medical imaging.

实验设计

在用贝伐单抗治疗前,从172个复发性胶质母细胞瘤患者(分配到具有2:1比例的发现和验证集)的多参数肿瘤自动提取和分析了4842个定量MRI特征。利用高通量方法,发现组患者的辐射特征受到监督主成分(superpc)分析,通过无进展和总体生存(PFSOS)产生将治疗结果分层至抗血管生成治疗的预测模型。

Experimental Design

A total of 4,842 quantitative MRI features were automatically extracted and analyzed from the multiparametric tumor of 172 patients (allocated to a discovery and validation set with a 2:1 ratio) with recurrent glioblastoma prior to bevacizumab treatment. Leveraging a high-throughput approach, radiomic features of patients in the discovery set were subjected to a supervised principal component (superpc) analysis to generate a prediction model for stratifying treatment outcome to antiangiogenic therapy by means of both progression-free and overall survival (PFS and OS).

结果

超检查预测因素将发现组患者分为低风险组或高风险组,PFSHR = 1.60; P = 0.017)和OSHR = 2.14; P<0.001),并成功验证了验证组患者(HR = 1.85PFSP = 0.030; HR = 2.60OSP = 0.001)。

Results

The superpc predictor stratified patients in the discovery set into a low or high risk group for PFS (HR = 1.60; P = 0.017) and OS (HR = 2.14; P < 0.001) and was successfully validated for patients in the validation set (HR = 1.85, P = 0.030 for PFS; HR = 2.60, P = 0.001 for OS).

结论

我们基于辐射图的超大型签名作为推定的成像生物标志物出现,用于鉴定可能从抗血管生成治疗中获益最多的患者,提高脑肿瘤非侵入性表征的知识,并强调辐射计作为改进的新工具在癌症治疗过程中以低成本提高决策支持的重要性。

Conclusions

Our radiomic-based superpc signature emerges as a putative imaging biomarker for the identification of patients who may derive the most benefit from antiangiogenic therapy, advances the knowledge in the noninvasive characterization of brain tumors, and stresses the role of radiomics as a novel tool for improving decision support in cancer treatment at low cost.

 

阅读原文:DOI: 10.1158/1078-0432.CCR-16-0702


慧影医疗科技(北京)有限公司

地点:北京市海淀区中关村东升科技园B2-C103

电话:400-890-9020

邮箱:radcloud@huiyihuiying.com

关闭
图片
图片
  • 深度学习科研云平台